

Observe that

F-focus (plural is foci)

(h, k) - center

c - distance from center (h, k) to a focus F. You can find a, b, or c using following equation

$$c^2 = a^2 + b^2$$

2a - transverse axis

2b – conjugate axis

Note: Observe that a < b, b < a, or a = b. What is more important is what variable the first term contains. If the first term contains x, then it is a horizontal hyperbola with the transverse axis 2a parallel to the *x*-axis and the conjugate axis 2b parallel to the *y*-axis. If the first term contains y, then it is a vertical hyperbola with the transverse axis 2a parallel to the *y*-axis and the conjugate axis 2b parallel to the *y*-axis and the conjugate axis 2b parallel to the *y*-axis and the conjugate axis 2b parallel to the *y*-axis and the conjugate axis 2b parallel to the *x*-axis.

Note:

Observe the equation of the *horizontal parabola* with a center (h, k) (not in the origin) is $(y - k)^2 = 4p(x - h)$, where the term with y variable is squared.

The equation of the *vertical parabola* with a vertex (h, k) is $(x - h)^2 = 4p(y - k)$, where the term with x variable is squared.

p – distance between the vertex and the focus F or directrix.

Dividing both sides by 4p and adding k to both sides of any equations, we can rewrite both equations as follows

Equation of the horizontal parabola $x = a(y-k)^2 + h$, where $a = \frac{1}{4p}$ Equation of the vertical parabola $y = a(x-h)^2 + k$, where $a = \frac{1}{4p}$

Horizontal Ellipse

Vertical Ellipse

Equation of the *horizontal ellipse*

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Equation of the *vertical ellipse*

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Where

a - major axis and b is the minor axis, and a > b(h, k) - center c or c_1 - distance from the center to a focus F.

You can find *a*, *b*, or *c* using following equation

$$c^2 = a^2 - b^2$$

Note: Simply, think about denominators of the equation: if the term with the *x* variable has the bigger denominator, then the ellipse is horizontal and has the major axis parallel to the *x*-axis. If the term with the *y* variable has the bigger denominator, then the ellipse is vertical and has the major axis parallel to the *y*-axis.

Equation of the *circle*

$$(x-h)^2 + (y-k)^2 = r^2$$

where (h, k) is the *center*, and r is the *radius* of a circle.