Hyperbola

Horizontal Hyperbola

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Observe that
\boldsymbol{F}-focus (plural is foci)
($\boldsymbol{h}, \boldsymbol{k}$) - center
c - distance from center (h, k) to a focus F. You can find a, b, or c using following equation

$$
c^{2}=a^{2}+b^{2}
$$

$2 \boldsymbol{a}$ - transverse axis
$2 \boldsymbol{b}$ - conjugate axis
Note: Observe that $a<b, b<a$, or $a=b$. What is more important is what variable the first term contains. If the first term contains \boldsymbol{x}, then it is a horizontal hyperbola with the transverse axis $2 \boldsymbol{a}$ parallel to the \boldsymbol{x}-axis and the conjugate axis $2 b$ parallel to the y-axis. If the first term contains \boldsymbol{y}, then it is a vertical hyperbola with the transverse axis $2 \boldsymbol{a}$ parallel to the \boldsymbol{y}-axis and the conjugate axis $2 \boldsymbol{b}$ parallel to the x-axis.

Parabola

Note:

Observe the equation of the horizontal parabola with a center (h, k) (not in the origin) is $(\boldsymbol{y}-\boldsymbol{k})^{2}=\mathbf{4 p}(\boldsymbol{x}-\boldsymbol{h})$, where the term with y variable is squared.

The equation of the vertical parabola with a vertex (h, k) is $(\boldsymbol{x}-\boldsymbol{h})^{2}=\mathbf{4} \boldsymbol{p}(\boldsymbol{y}-\boldsymbol{k})$, where the term with x variable is squared.
\boldsymbol{p} - distance between the vertex and the focus F or directrix.

Dividing both sides by $4 p$ and adding k to both sides of any equations, we can rewrite both equations as follows
Equation of the horizontal parabola $x=a(y-k)^{2}+h$, where $a=\frac{1}{4 p}$
Equation of the vertical parabola $\quad y=a(x-h)^{2}+k$, where $a=\frac{1}{4 p}$

Ellipse

Horizontal Ellipse

Vertical Ellipse

Equation of the horizontal ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Equation of the vertical ellipse

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Where

$$
\boldsymbol{a} \text {-major axis and } \boldsymbol{b} \text { is the minor axis, and } a>b
$$

(h, k) - center
\boldsymbol{c} or \boldsymbol{c}_{1}-distance from the center to a focus \boldsymbol{F}.
You can find a, b, or c using following equation

$$
c^{2}=a^{2}-b^{2}
$$

Note: Simply, think about denominators of the equation: if the term with the x variable has the bigger denominator, then the ellipse is horizontal and has the major axis parallel to the x-axis. If the term with the y variable has the bigger denominator, then the ellipse is vertical and has the major axis parallel to the y-axis.

Circle

Equation of the circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

where (h, k) is the center, and r is the radius of a circle.

